使用说明书 |
发电机剩磁消失的起因和危害 |
摘要:发电机失磁运行是一种常见的故障形式,发电机运行时发生失磁会对发电机本身和电力系统造成影响,从而导致破坏电力系统的稳定运行、威胁发电机的自身安全。所谓失磁即使发电机的转子失去励磁电流。发电机失磁后,引起发电机失步,将在转子的阻尼绕组、转子表面、转子绕组中产生差频电流,引起附加温升,可能引起转子局部高温,产生严重过热现象,危及转子安全,其次,同步发电机异步运动,在定子绕组中将出现脉动电流,产生交变的机械力矩,使机组发生振动,影响发电机的安全。同时,定子电流增大,可能使定子绕组温度升高。
一、发电机失磁的定义
发电机失磁是指发电机剩磁消失。剩磁指的是铁磁材料磁化过程中外加磁场消失后铁磁材料还保留的磁场。发电机剩磁指的是停机后定转子铁心保留的剩磁。
1、失磁过程
以隐极发电机为例介绍发电机失磁过程。设发电机与无穷大系统相连,则机端电压在失磁过程保持恒定不变。设发电机电势为Eq,定子电流为I,功率因数角为φ,发电机功角为δ。
发电机正常滞相运行,定子电流滞后于机端电压,发电机发出有功功率和无功功率。失磁后,发电机励磁电流逐渐减小,Eq随之减小,定子电流超前于机端电压,发电机进入进相运行状态,发电机发出有功功率,吸收无功功率。若励磁电流进一步衰减,发电机功角越过90°,则发电机失去同步运行状态,此时,定子电流超前于机端电压45°左右,为维持有功负荷不变,定子电流比正常运行增加很多。之后,发电机会进入稳定异步运行状态。
发电机定子侧阻抗判据有两种阻抗圆,异步阻抗圆或静稳边界圆,动作方程为:
90°≤Arg{(z+jXB)/(Z-jXA)}≤270°
对于阻抗判据,可以选择与无功反向判据结合:
图1 发电机失磁过程 |
图2 发电机机端正序测量阻抗失磁后的变化轨迹 |
2、何为发电机剩磁
对于自励式发电机,靠剩磁发电,发出的电再向转子绕组供电,加强转子磁场,通过正反馈使发电机输出电压逐渐升高,最后达到额定电压。如果没有剩磁,发电机就没法发电了。
3、阻抗平面失磁过程和失磁判据
发电机数据通常采用不饱和值。以660KW斯坦福交流发电机为例,根据发电机额定容量和额定电压可得到1p.u.=0.545 。若阻抗判据采用二次值,则可得到异步边界阻抗圆的上下端点值为2.29 和32.4 ;若发电机和系统的联系阻抗为3.8 ,则静稳极限阻抗圆的上下端点为3.8Ω和32.4Ω。绘制发电机失磁后机端阻抗的运动轨迹,如图3所示。
通过比对失磁数据的时间标签,可以得到机端阻抗轨迹在失磁后3.03s进入静稳极限阻抗圆,在失磁后4.2s进入异步阻抗圆,在失磁后约10s,阻抗轨迹进入基准阻抗圆。因发电机失磁前有功功率239MW,约为额定功率的36%,阻抗轨迹在约1s后离开基准阻抗圆,之后在异步圆和基准阻抗圆之间振荡。若综合考虑保护动作的延时,即静稳极限阻抗圆会有1~1.5s的延时,异步边界阻抗圆会有0.5s的延时,则静稳圆和异步圆都会在失磁后4.5~5s之间动作于跳闸,两者实际动作时间基本差不多。
4、P-Q坐标平面判据
基于P-Q坐标平面的失磁保护判据,是由发电机运行特性曲线和静稳极限阻抗圆映射到P-Q坐标平面的静稳极限圆共同构成的。
综上所述,可设两段保护,分别取0.85倍和0.95倍的额定电压下P-Q坐标平面的静稳圆作为动作条件。其中0.85倍额定电压下的静稳圆动作于报警,0.95倍额定电压下的静稳圆经延时动作于跳闸。失磁保护需要综合考虑发电机的特性曲线如图4所示。
图3 阻抗平面失磁过程和失磁判据 |
图4 交流发电机特性曲线图 |
二、发电机失去励磁的原因
一般可归纳为励磁回路开路或短路,包括励磁机、励磁变或励磁回路的故障、误碰励磁开关、切换备用励磁不当、励磁系统失去厂用电源、转子绕组或励磁回路开路或转子绕组严重短路、半导体励磁系统发生故障、转子滑环着火或烧断。
1、励磁变故障跳闸引起发电机失磁
由于该发电机存在绝缘制造缺陷,或运行中绝缘缺陷逐步恶化,产生放电现象,导致励磁变保护动作跳闸,失磁保护动作导致机组跳闸。应严格执行规程、标准,开展定期试验、落实情况、排查问题。对照相关规程、标准,认真开展绝缘专业定期试验落实情况。
2、灭磁开关跳闸引起发电机失磁
灭磁开关跳闸原因包括:
(1)DCS上误发灭磁开关跳闸指令
(2)出口继电器故障发出灭磁开关跳闸指令;
(3)集控室电气立盘灭磁开关跳闸按钮接点吸合发出跳闸指令;
(4)励磁小间就地控制盘手动分开灭磁开关;
(5)灭磁开关控制回路电缆绝缘下降;
(6)开关本体机械跳开灭磁开关;
(7)直流系统瞬时接地导致灭磁开关跳闸。
3、励磁滑环打火引起发电机失磁
事故原因为碳刷压簧压力不均,造成部分碳刷电流分布不均,致使个别碳刷电流过大,引起发热。另外碳刷存在脏污现象,污染了碳刷和滑环接触面,造成部分碳刷和滑环接触电阻增大继而出现打火,另外正、负极碳刷磨损程度不均衡,负极磨损一直比正极严重,因磨损严重造成滑环表面不平度加大,因未及时得到控制造成滑环环火。
4、直流系统接地引起发电机失磁
直流系统发生正极接地后,由于长电缆存在分布电容,而电容两端电压不能突变,引起发电机灭磁开关外部跳闸回路长电缆电容电流流经其外部跳闸出口中间继电器,继电器动作跳开发电机灭磁开关,造成发电机失磁保护动作跳机。
5、励磁调节系统故障引起发电机失磁
发电机励磁系统调节器 EGC 板故障,造成发电机励磁调节器转子过电压保护动作,导致失磁保护动作跳闸。
6、整流柜全停引起发电机失磁
在启动电泵过程中,引起系统电压降低,励磁系统发出辅助电源故障报警,由于切换回路继电器辅助触电电阻过大,导致电源切换失败,整流柜风机无法正常运行,导致整流柜超温跳闸,失磁保护动作,机组停运。整流柜交流侧电源开关触头的镀银层薄或质量低劣,运行中铜与空气接触产生氧化层,造成触头接触电阻增大,随着电流增大,温度升高导致触头过热,处理过程中导致失磁保护动作,发电机组跳闸。
三、发电机失磁的危害
1、对发电机本身的危害
(1)由于发电机失磁后,转子与定子出现了转差,在转子表面感应出转差频率的电流,该电流在转子中产生损耗,使转子发热增大,转差越大电流越大,严重时可使转子烧损;特别是直接冷却高利用率的大型机组,热容量裕度相对降低,转子容量过热。
(2)失磁后,发电机转入异步运行,发电机的等效电抗降低,从系统吸收的无功功率增大。失磁前的有功越大,转差越大,等效电抗就越小,吸收的无功也越大,因此在大负荷下失磁,由于定子绕组过电流将使定子过热。
(3)异步运行中,发电机的转距有所变化,因此有功功率要发生严重的周期性变化,使发电机定子、转子、基座受到异常的机械冲击力振动,使机组的安全受到威胁,柴油发电机由于同步电抗较大,平均异步功率较大,调速系统也比较灵敏,所以振动不是十分严重。
(4)失磁运行,定子端部漏磁通增大,使端部的部件和边段的铁芯过热。
(5)大型发电机失磁易引起发电机振荡,失磁前的有功功率越大,失磁后吸收的无功也越大,发电机端电压下降越大,发电机输出功率降低,功角特性由1转向2,从a点向b点运行,因为过剩力矩的出现,转子加速使功角δ增大,从b点向c点运行,由于转子惯性,使之越过c点,使功角δ大于90°,达到d点,到d点后由于异步力矩的作用及惯性的消失,向c点运行到达c点,由于惯性又向b点,这样来回摆动,转速时高时低,这就形成了发电机的振荡。
2、对电力系统有危害
(1)发电机失磁后,从系统吸收相当容量的无功功率,引起系统电压下降,如果电力系统无功储备容量不足,将使邻近失磁的发电机组部分系统电压低于允许值,威胁负载和各电源间的稳定运行,甚至导致系统电压崩溃而瓦解。
(2)发电机失磁后,引起系统电压下降,将使邻近的发电机增大无功较多,甚至强磁动作,因而引起发电机、发电机、线路引起过电流、保护动作、导致大面积停电,扩大故障范围。
四、发电机失磁和剩磁应对措施
1、充磁方法
(1)断开自动电压调节器(AVR)同励磁机定子绕组的连接;
(2)将一个电压为24V的直流电源(如蓄电池)与励磁机定子绕组连接(注意两者的正负极要相互对应);
(3)启动机组将转速调至额定转速运行一段时间即可。
2、现场消磁方法
(1)直流消磁方法
直流消磁方法通过单相通入正、反向直流电流,反复若干次后完成消磁,也是最常用的消磁技术。具体操作方法为采用一个大小可调的直流电源在发电机高压绕组B-0或A-C相通入直流电流I0(例如5 A),电流稳定后断开电源,再反向通入降低5%~10%的直流电流11(4.5 A),依次类推,直至施加至0.5mA后结束。典型接线如图5所示。采用直流消磁方法对前述所建发电机进行消磁,消磁后进行空载合闸。
由图可知,消磁后所得励磁电流幅值仅为2 A,这与发电机空载电流大小相符合,且最大和最小幅值对称说明剩磁极小,发电机此时可成功合闸。
(2)交流消磁方法
交流消磁方法与低电压空载试验类似,通过在被试发电机低压侧ab、bc、ca之间同时施加可调的交流电压,并使高压侧中性点接地以保证消磁过程中的对称性,接线方法如图8所示。
具体操作为采用调压器将电压升至额定电压的30%,保持5min后,将电压缓慢平稳将至0,重复此步骤3—5次即可达到消磁目的。与直流消磁方法相比,此方法所需的设备较多,试验布置更复杂一些。
图5 发电机直流消磁方法接线 |
图6 发电机直流消磁方法接线 |
总结:
发电机失磁保护是发电机继电保护的一种,当发电机的励磁突然消失或部分消失至完全失去时,励磁电流逐渐衰减至零。 当δ超过静态稳定极限角时,发电机与系统失去同步,此时发电机保护装置动作于发电机出口断路器,使发电机脱离电网,防止发电机损坏和保护电网稳定运行。综上所述,铁磁材料的磁滞现象是导致剩磁存在的主要原因,磁通密度滞后于磁感应强度的特性,导致分闸时剩磁的形成。由空载合闸模型推导得到合闸角为0°且t=T/2时磁感应强度和磁通最大,励磁涌流也最大。如果和剩磁方向相同,则励磁涌流会进一步增大,使保护动作,危害设备本身。因此有必要对大容量发电机进行消磁处理。铁芯消磁以换向衰减为基本原理,现场多使用便携式的直流消磁装置进行消磁。
----------------
以上信息来源于互联网行业新闻,特此声明!
若有违反相关法律或者侵犯版权,请通知我们!
温馨提示:未经我方许可,请勿随意转载信息!
如果希望了解更多有关柴油发电机组技术数据与产品资料,请电话联系销售宣传部门或访问我们官网:https://www.11fdj.com
- 上一篇:柴油发动机漏油原因、检测步骤和修补方法
- 下一篇:柴油发电机的磨合质量规范